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SOLUTION SET  II 

EXERCISE II.1 : THÉVENIN’S EQUIVALENT CIRCUIT 
A. We find the resistance of Thévenin  by replacing the 

voltage source with a short circuit and the current source 
with an open circuit, as shown in the figure on the right. 

 Thévenin's resistance is obtained by grouping the 
resistors of 4 W and 12 W which are in parallel, then in 
series with the one of 1 W : 

  

B. Determination of the voltage of Thévenin  as shown in the figure below. 

 

In the current mesh , the voltage equation is expressed as : 

  

As      Þ      

Thévenin's voltage can be calculated across the resistor of 12 W : 

  

The figure opposite shows Thévenin's equivalent circuit, 
connected to the load resistors between the terminals  1  –  2  . 
Charge current  is given by : 
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EXERCISE II.2 : NORTON’S THEOREM 

A. The Norton resistance is found by replacing the 
independent voltage source with a short circuit and 
connecting a 1 V voltage source between the 
terminals.   1  –  2  of the circuit, which gives the diagram 
of the figure opposite. 
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In this diagram : 

- The resistor of 4 W is short circuited ; we can ignore it and . 
- The dependent current source, the voltage source and the resistor of 5 W are in parallel. 

Þ      Þ          Þ      

B. Norton's current  is found by shorting the 
terminals   1  –  2  of the circuit, and calculating the 
current  which is established in this short circuit. 
In this diagram : 

   Þ    Þ   

EXERCISE II.3 : POWER TRANSFER 

We must find the resistance of Thévenin  and the voltage of Thévenin . 

A. We find the resistance of Thévenin  by 
replacing the voltage source with a short circuit 
and the current source with an open circuit, as 
shown in the figure on the right. The resistors of 
6 W and 12 W are in parallel with each other and in 
series with the resistors of 3 W and 2 W : 

      Þ      

 We get the voltage of Thévenin  by applying Kirchhoff's law of currents in the meshes 
of the figure below. 

 
In the current mesh  : 

      avec      Þ      

In the large mesh formed by the whole circuit : 

      avec      Þ      

B. Maximum power transfer  is reached with  and the voltage  between the 
terminals   1  and  2  : 

      Þ      
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EXERCISE II.4 : SUPERPOSITION THEOREM 
We have three sources that each contribute to feed current I. Let's call : 
-  the component of the current due to the voltage source of 12 V 
- the component of the current due to the voltage source of 24 V 
- the component of the current due to the voltage source of 3 A. 

1. Compute  keeping only the 12 V source, as shown in 
the figure opposite. 

 In this diagram the resistor of 8 W is simply in series 
with the one of 4 W (to the right). These two resistors 
can therefore be replaced by a total resistance of 12 W, 
which is then in parallel with the resistor of 4 W (to the 
left). The equivalent resistance is given by : 

  (1) 

 The diagram above can be simplified as shown in the figure 
opposite. 

  (2) 

2. Compute  retaining only the 24 V source, as shown in the 
figure. The analysis of the upper mesh gives : 

  (3) 

And in the mesh of the current  : 

  (4) 

By substituting (4) in (3) : 

  (5) 

3. Compute keeping only the source of 3 A, as shown in the 
figure opposite. The sum of currents at the node  gives : 

      Þ      (6) 

And at node  : 

      Þ      (7) 

By substituting (7) in (6) we obtain  : 

Þ  (8) 

Finally,      Þ      
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