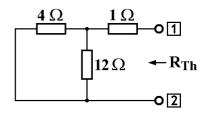
SOLUTION SET II

EXERCISE II.1: THÉVENIN'S EQUIVALENT CIRCUIT

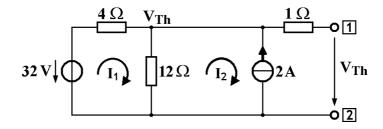
A. We find the resistance of Thévenin R_{Th} by replacing the voltage source with a short circuit and the current source with an open circuit, as shown in the figure on the right.

Thévenin's resistance is obtained by grouping the resistors of 4Ω and 12Ω which are in parallel, then in series with the one of 1Ω :

$$R_{Th} = \frac{4 \times 12}{4 + 12} + 1 = 4 \Omega$$



B. Determination of the voltage of Thévenin V_{Th} as shown in the figure below.



In the current mesh I₁, the voltage equation is expressed as:

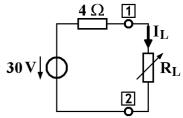
$$-32+4 I_1+12 (I_1-I_2)=0$$

As
$$I_2 = -2 A$$
 \Rightarrow $I_1 = 0.5 A$

Thévenin's voltage can be calculated across the resistor of 12 Ω :

$$V_{Th} = 12 \cdot (I_1 - I_2) = 10 \cdot (0, 5 + 2) = 30 \text{ V}$$

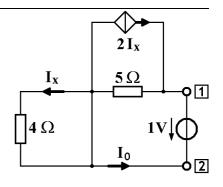
The figure opposite shows Thévenin's equivalent circuit, connected to the load resistors between the terminals $\fbox{1}-\fbox{2}$. Charge current I_L is given by :



$$I_{L} = \frac{V_{Th}}{R_{Th} + R_{L}} = \frac{30}{4 + R_{L}} \implies \begin{cases} R_{L} = 6 \Omega & \Rightarrow & I_{L} = 3 A \\ R_{L} = 16 \Omega & \Rightarrow & I_{L} = 1,5 A \\ R_{L} = 36 \Omega & \Rightarrow & I_{L} = 0,75 A \end{cases}$$

EXERCISE II.2: NORTON'S THEOREM

A. The Norton resistance is found by replacing the independent voltage source with a short circuit and connecting a 1 V voltage source between the terminals. 1 – 2 of the circuit, which gives the diagram of the figure opposite.



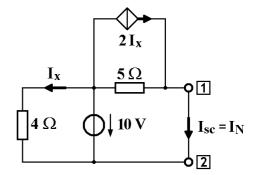
In this diagram:

- The resistor of 4 Ω is short circuited; we can ignore it and $I_X = 0$.
- The dependent current source, the voltage source and the resistor of 5 Ω are in parallel.

$$\Rightarrow \quad I_0 = \frac{1V}{5\Omega} = 0.2 \text{ A} \quad \Rightarrow \quad R_N = \frac{U_0}{I_0} \quad \Rightarrow \quad \boxed{R_N = 5\Omega}$$

B. Norton's current I_N is found by shorting the terminals $\boxed{1}-\boxed{2}$ of the circuit, and calculating the current I_{SC} which is established in this short circuit. In this diagram :

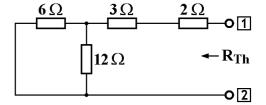
$$I_x = \frac{10 \text{ V}}{4 \Omega} = 2.5 \text{ A} \implies I_{SC} = \frac{10 \text{ V}}{5 \Omega} + 2 \cdot I_X \implies \boxed{I_N = 7 \text{ A}}$$



EXERCISE II.3: POWER TRANSFER

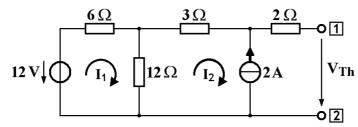
We must find the resistance of Thévenin R_{Th} and the voltage of Thévenin V_{Th} .

A. We find the resistance of Thévenin R_{Th} by replacing the voltage source with a short circuit and the current source with an open circuit, as shown in the figure on the right. The resistors of $6\ \Omega$ and $12\ \Omega$ are in parallel with each other and in series with the resistors of $3\ \Omega$ and $2\ \Omega$:



$$R_{Th} = \frac{6 \times 12}{6 + 12} + 2 + 3$$
 \Rightarrow $R_{Th} = 9 \Omega$

We get the voltage of Thévenin V_{Th} by applying Kirchhoff's law of currents in the meshes of the figure below.



In the current mesh I_1 :

$$-12+18 I_1-12 I_2=0$$
 avec $I_2=-2 A$ \Rightarrow $I_1=-2/3 A$

In the large mesh formed by the whole circuit:

$$-12+6 I_1+3 I_2+V_{Th}=0$$
 avec $I_2=-2 A$ \Rightarrow $V_{Th}=22 V$

B. Maximum power transfer P_{max} is reached with $R_L = R_{Th}$ and the voltage V_{Th} between the terminals $\boxed{1}$ and $\boxed{2}$:

$$P_{\text{max}} = \frac{V_{\text{Th}}^2}{4R_{\text{Th}}} \implies P_{\text{max}} = 13,44 \text{ W}$$

EXERCISE II.4: SUPERPOSITION THEOREM

We have three sources that each contribute to feed current I. Let's call:

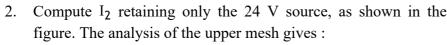
- I₁ the component of the current due to the voltage source of 12 V
- I₂ the component of the current due to the voltage source of 24 V
- I₃ the component of the current due to the voltage source of 3 A.
- 1. Compute I₁ keeping only the 12 V source, as shown in the figure opposite.

In this diagram the resistor of 8Ω is simply in series with the one of 4Ω (to the right). These two resistors can therefore be replaced by a total resistance of 12Ω , which is then in parallel with the resistor of 4Ω (to the left). The equivalent resistance is given by:

$$R_{\acute{e}q} = \frac{12 \times 4}{12 + 4} = 3 \Omega \tag{1}$$

The diagram above can be simplified as shown in the figure opposite.

$$I_1 = \frac{12 \text{ V}}{6 \Omega} = 2 \text{ A}$$
 (2)



$$16 I_a - 4 I_b + 24 = 0 (3)$$

And in the mesh of the current I_b:

$$7 I_{b} - 4 I_{a} = 0$$
 (4)

By substituting (4) in (3):

$$I_2 = I_b = -1$$
 (5)

3. Compute keeping only the source of 3 A, as shown in the figure opposite. The sum of currents at the node V₂ gives:

$$3 = \frac{V_2}{8} + \frac{V_2 - V_1}{4} \implies 24 = 3 V_2 - 2 V_1$$
 (6)

And at node V_1 :

$$\frac{V_2 - V_1}{4} = \frac{V_1}{4} + \frac{V_1}{3} \quad \Rightarrow \quad V_2 = \frac{10}{3} V_1 \tag{7}$$

By substituting (7) in (6) we obtain $V_1 = 3 V$:

$$\Rightarrow I_3 = \frac{V_1}{30} = 1A \tag{8}$$

Finally,
$$I = I_1 + I_2 + I_3 \implies \boxed{I = 2 \text{ A}}$$

